A scattered data approximation tool to map single-walled carbon nanotube dispersion to the processing parameters in polymer nanocomposites

نویسندگان

  • Jonathan W. Lee
  • Andrew J. Meade
  • Enrique V. Barrera
چکیده

The relationship of nanocomposite dispersion to dispersion techniques and other processing parameters was studied. Examining all permutations of the various factors in the laboratory is a challenging task. In this paper, we propose to map a correlation between inputs and output via a self-adaptive scattered data approximation method. The proposed greedy algorithm, sequential function approximation (SFA), reveals the multidimensional behaviour of the system, provides the sensitivity of each input and presents the combination of inputs that is most suitable for a specific output. In this research, we have collected data from various research institutions and applied it to SFA. The results show that SWNT weight percent, sonication time, SWNT modification and high shear mixing time are key factors that affect the dispersion. This text discusses SFA, the data and the results in detail. This work serves as a proof of concept for functional mapping to be applied to polymer processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method

In this paper, finite element method is used to obtain thermal conductivity coefficients of single-walled carbon nanotube reinforced polypropylene. For this purpose, the two-dimensional representative volume elements are modeled. The effect of different parameters such as nanotube dispersion pattern, nanotube volume percentage in polymer matrix, interphase thickness between nanotube and surroun...

متن کامل

Finite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites

The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring ele...

متن کامل

Investigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM

Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...

متن کامل

Effect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites

Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...

متن کامل

Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties

In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJKEDM

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010